Comparison of Heuristic Algorithms in Functions Optimization and Knapsack Problem
نویسندگان
چکیده
This paper addresses the comparison of heuristic algorithms in the case of real functions optimization and knapsack problem. Metaheuristics for algorithms hill climbing, simulated annealing, tabu search and genetic algorithm are shown, test results are presented and conclusions are drawn. Input parameters for optimization functions problem are optimised on a sample of functions. Also, algorithms' efficiencies are compared and their achievement for large dimension of problems is measured.
منابع مشابه
EMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کاملPERFORMANCE COMPARISON OF CBO AND ECBO FOR LOCATION FINDING PROBLEMS
The p-median problem is one of the discrete optimization problem in location theory which aims to satisfy total demand with minimum cost. A high-level algorithmic approach can be specialized to solve optimization problem. In recent years, meta-heuristic methods have been applied to support the solution of Combinatorial Optimization Problems (COP). Collision Bodies Optimization algorithm (CBO) a...
متن کاملBQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملDesigning a Meta-Heuristic Algorithm Based on a Simple Seeking Logic
Nowadays, in majority of academic contexts, it has been tried to consider the highest possible level of similarities to the real world. Hence, most of the problems have complicated structures. Traditional methods for solving almost all of the mathematical and optimization problems are inefficient. As a result, meta-heuristic algorithms have been employed increasingly during recent years. In thi...
متن کاملA Novel Heuristic Optimization Methodology for Solving of Economic Dispatch Problems
This paper presents a biogeography-based optimization (BBO) algorithm to solve the economic loadDispatch (ELD) problem with generator constraints in thermal plants. The applied method can solvethe ELD problem with constraints like transmission losses, ramp rate limits, and prohibited operatingzones. Biogeography is the science of the geographical distribution of biological species. The modelsof...
متن کامل